Physics Model

From charge conservation: \[ div(\vec{j}) + \frac{\partial \rho}{\partial t} = 0 \]

Material equations: \[ \sigma \vec{E} = \vec{j} \]

\[ \vec{D} = \epsilon \vec{E} \]

User Interface

Electrical Currents Modul Interface

In user interface for the electrical currents physics module the user can predefine potential values on the surface, or current density values. Current Sources density can be defined in the domains.

Material Properties

Isotropic Material parameters
Name Dimension Definition Internal variable name
e_r 1 Relative dielectric constant e_r11_INTERNAL, e_r22_INTERNAL, e_r33_INTERNAL
s_r 1 Conductivity S11_INTERNAL, S22_INTERNAL, S33_INTERNAL
Anisotropic Material parameters
Name Dimension Definition Internal variable name
er_11 1 Relative dielectric constant tensor 11 component e_r11_INTERNAL
er_12 1 Relative dielectric constant tensor 12 component e_r12_INTERNAL
er_13 1 Relative dielectric constant tensor 13 component e_r13_INTERNAL
er_21 1 Relative dielectric constant tensor 21 component e_r21_INTERNAL
er_22 1 Relative dielectric constant tensor 22 component e_r22_INTERNAL
er_23 1 Relative dielectric constant tensor 23 component e_r23_INTERNAL
er_31 1 Relative dielectric constant tensor 31 component e_r31_INTERNAL
er_32 1 Relative dielectric constant tensor 32 component e_r32_INTERNAL
er_33 1 Relative dielectric constant tensor 33 component e_r33_INTERNAL
S11 1 Conductivity tensor 11 component S11_INTERNAL
S12 1 Conductivity tensor 12 component S12_INTERNAL
S13 1 Conductivity tensor 13 component S13_INTERNAL
S21 1 Conductivity tensor 21 component S21_INTERNAL
S22 1 Conductivity tensor 22 component S22_INTERNAL
S23 1 Conductivity tensor 23 component S23_INTERNAL
S31 1 Conductivity tensor 31 component S31_INTERNAL
S32 1 Conductivity tensor 32 component S32_INTERNAL
S33 1 Conductivity tensor 33 component S33_INTERNAL

Examples

2D Simulations

Current flow through a circle